An LFMCW detector with new structure and FRFT based differential distance estimation method

نویسندگان

  • Kai Yue
  • Xinhong Hao
  • Ping Li
چکیده

This paper describes a linear frequency modulated continuous wave (LFMCW) detector which is designed for a collision avoidance radar. This detector can estimate distance between the detector and pedestrians or vehicles, thereby it will help to reduce the likelihood of traffic accidents. The detector consists of a transceiver and a signal processor. A novel structure based on the intermediate frequency signal (IFS) is designed for the transceiver which is different from the traditional LFMCW transceiver using the beat frequency signal (BFS) based structure. In the signal processor, a novel fractional Fourier transform (FRFT) based differential distance estimation (DDE) method is used to detect the distance. The new IFS based structure is beneficial for the FRFT based DDE method to reduce the computation complexity, because it does not need the scan of the optimal FRFT order. Low computation complexity ensures the feasibility of practical applications. Simulations are carried out and results demonstrate the efficiency of the detector designed in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

Fractional Fourier Transform Based OFDMA for Doubly Dispersive Channels

The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...

متن کامل

A new iteration method for solving a class of Hammerstein type integral equations system

In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...

متن کامل

High resolution LFMCW radar system using model-based beat frequency estimation in cable fault localization

A linear frequency modulated continuous wave (LFMCW) radar is introduced to localize the impedance discontinuities on the instrument cable used in nuclear plants. The LFMCW reflectometry uses a phenomenon that electromagnetic pulses are reflected at the impedance discontinuities to localize impedance discontinuity points on the cable. For localizing impedance discontinuities, time delays betwee...

متن کامل

Sparse representation-based DOA estimation of coherent wideband LFM signals in FRFT domain

In this paper, the method of direction-of-arrival (DOA) estimation for wideband signals based on sparse representation of FRFT domain is proposed by using the excellent convergence of FRFT to LFM signals. This method focuses the wideband signal to the reference frequency using FRFT, establishes the DOA estimation model and the array manifold matrix in the FRFT domain, and reconstructs the spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016